Showing posts with label Theory. Show all posts
Showing posts with label Theory. Show all posts

Potentiometers and guitar effects

Remember my post about resistors in guitar effects? Let's study another component essential for guitar effects: the potentiometer. It is essential for the main reason that it is one of the two components that allow you to modulate the effect of your guitar pedal, in a continuous manner! Thus, you can choose the final volume of your pedal, the intensity of the effect (gain, mix, delay volume...etc). Lets see what is a potentiometer, how it works, and how it is used in a guitar pedal effects.


The potentiometer: what is it?


A potentiometer simply is a variable resistor! As resistors, its value is expressed in Ohms. Usually, potentiometers have a value between 1k and 10M. If you turn the potentiometer, its value will change. It has 3 lugs, named A, B and C (or 1, 2 and 3, respectively) that you can see on this picture:
potentiometer a b c 1 2 3
It consists of 2 combined resistors. The value between A and C (lets call it Rac) is constant, and equal to the value of the potentiometer (100k for instance), whereas the value between A and B (Rab) or between B and C (Rbc) can vary between 0 and 100k depending on the rotation of the potentiometer. In fact, it is like dividing a resistor in two:
potentiometer
The value of Rab and Rbc varies depending on the rotation of the potentiometer, but Rab + Rbc is constant, equal to the value of the potentiometer, Rac! The symbol used for a potentiometer is this one:
potentiometer a b c schematic
Inside the potentiometer, there is a resistive track. When you rotate the potentiometer, the length of this resistive track varies between the lugs, and you vary the value of the resistance. Here is a gif that I made to make it easier to understand:
potentiometer how it works
So when you rotate the potentiometer to the right, the resistance between A and B increases. When you rotate it to the left, it diminishes.
Inversely, if you rotate it to the right, the resistance between B and C is reduced, and to the right it increases.
In the meantime, the resistance between A and C stays constant, and is equal to the value of the potentiometer !

So depending on what you want to use the potentiometer for, you can wire it differently. If you want the resistance to increase when the potentiometer is rotated to the right, you can wire the potentiometer between B and C:
potentiometer wiring

Thus, you can replace any resistor of the circuit by a potentiometer!

And trimpots?
Trimpots are just "mini" potentiometers! It works exactly like a potentiometer, with 3 lugs, but you have to set it with a screwdriver. It is quite useful to set the value of a resistor (bias resistors for instance), without having to solder / dessolder all the time.


Logarithmic, linear? Mono, stereo?

The potentiometer is characterized by its value (1k, 100k, 2M...etc.), but not only!

The variation of the resistance can be linear or logarithmic (also called "audio"). When a potentiometer is linear, the resistance will vary in a linear way when you turn the potentiometer (thanks captain obvious), whereas a logarithmic potentiometer will vary in a logarithmic way. That means that the resistor will not change a lot at the beginning of the rotation, and the will vary a lot during the middle / end of the rotation.

potentiometer log vs linear

So.... Why should I use a logarithmic potentiometer?

Two main reasons for that:
  1. The human ear functions in a logarithmic way: the volume is perceived in a logarithmic scale! The volume scale (decibel) is in fact a logarithmic scale. It is quite an important detail: from 95 to 96 Db, you have increase the volume a lot! So for a volume knob, a logarithmic can be better, the volume increase will be perceive as linear by our ears!
  2. With a log pot, the parameter will vary a lot in the higher value, which gives you more precision to set the lower values. This can be useful if you want to set precisely the lower settings, for instance with an overdrive: the low drive setting can be set more precisely, which is better if you want to have a low crunch for instance. Using an inverted log potentiometer allows you to set more precisely higher values of the pot.
I would suggest to try it on some circuits, sometimes it really is better!
Potentiometers are named differently depending on this characteristic:
  • "A" = audio = logarithmic
  • "B" = linear
  • "C" = inverted logarithmic 
For example, a linear 100k pot will be marked "B100K":
potentiometer B100k
A logarithmic 100k potentiometer will be marked "A100k"...Etc.

A potentiometer can also be mono or stereo. A mono potentiometer is a standard potentiometer with 3 lugs. When it is stereo, there is 2 resistive tracks inside the potentiometer: it is a "doubled" potentiometer. Thus, this kind of pot have 6 pins:
stereo potentiometer

It is like having two potentiometers in one! They are rarely used in guitar effects, that are mono most of the time, except in specific cases (in the Klon Centaur for instance, a stereo potentiometer sets the mix between the untreated signal and the drive signal). Sometimes it can be useful if you want one potentiometer that sets 2 different parameters in the same time.

Lets see how useful potentiometers are in a guitar pedal!


Typical uses of a potentiometer in guitar pedals


1. Setting the output volume
Most of the time, the output volume of an effect (especially with overdrives) is louder than the initial signal, especially with a boost, or an overdrive with a second gain stage that allows this volume jump.

To set the volume correctly, we can use a potentiometer, wired as a variable resistor. A part of the signal will go to the ground, whereas the rest of it will go outside the circuit. The potentiometer will split the signal in two:
potentiometer volume
The "official" schematic is on the left, on the right I represented the potentiometer as 2 resistors to make it clearer. When you turn the pot to the right, Rab diminishes, and Rbc increase: less signal go to the ground: volume increases!

Note that signal goes in through the "C" (3) lug, so Rbc increases when you turn it to the right, to make it a volume boost and not a volume cut.

This system is used in almost every guitar effect with a "master volume" knob: Fuzz Face, Big Muff, Tube screamer....

2. Gain setting
The gain of an OP amp is usually defined by two resistors (read my post about resistors in effect pedals):
inverting non inverting OP amp 
The gain of the OP amp is defined by R2/R1 (inverting OP amp) or 1 + R4/R3 (non inverting). So if you replace one of the resistors by a potentiometer, you can vary the gain of the OP amp! 
If you add diodes in the loop, the signal will be clipped, making it saturates. The more gain, the more clipping = more saturation! So a pot in the loop can adjust the gain of the pedal

This exactly what we can find in most overdrive circuits using OP amps! Here is an example from the gain stage of the Jan Ray pedal:
first gain stage Jan Ray gain schematic
The 4 diodes will clip the signal and create saturation. A 47pF capacitor will roll off some high frequencies. The gain resistor of the inverting OP amp (R2) is replaced by R4 + a potentiometer.

If you turn the potentiometer, the resistance of R4 + pot increases, and thus it increases the  gain of the OP amp, leading to more saturation!

The same schematic can be find in a Tube Screamer!


3. Replace a resistor in filters to set amount of bass / trebles
High or low pass passive filters allows to filter bass or trebles. A high pass filter let frequencies that are higher than a cutoff frequency pass, whereas the low pass filter let only pass frequencies that are lower than the cutoff frequency:
Low Pass High Pass filter 
High pass filter let trebles pass, and low pass let bass pass. The sound is not cut directly, but diminish rather fastly from the cuttoff frequency. We can calaculate the cutoff frequency with the following formula:
passive filter cutoff frequency formula
So if you make R vary, you will make the cutoff frequency vary, and you will let more or less bass go through the circuit!

Most "Tone" potentiometers (also on your guitar!) use a low pass filter, whith a potentiometer plus a resistor to set the cutoff frequency. Here is an example from the ProCo RAT:
RAT filter schematic
There it is!

So here are some uses with potentiometers... Experiment and try to replace resistors in your circuit to see whether it is interesting or not!

I hope that you enjoyed this post! Do not hesitate to thank me by liking the Coda Effects facebook page!


LPB1 boost

Remember my LPB1 PCBs? I finally built one! As the PCB is quite small, I decided to make my first 1590A build. Here it is:
LPB1 boost clone 1590A
Simple one knob boost, with quite a lot of gain. I used a 2n5088, which provides already quite a lot of gain. It is a simple volume boost, quite transparent that can be used to make your amp saturate a bit more, or to simply increase the volume of your guitar if you use it in your amp loop.
LPB1 boost clone 1590A
This is my first 1590A, and everything went better than expected. I was afraid that I would not have enough space inside such a tiny box to make all the component AND the circuit fit, but it was OK.

Some advice to make it easier:
  • Use PCB mount 3PDT. They are a bit smaller than "normal" 3PDT and let you a bit more space.
  • Use semi-enclosed jack like Lumberg KLBM3 jacks. They are a bit smaller and easier to use than open jacks like the one I used.
  • use 9mm pots.
Madbean pedals has issued a very nice guide to explain you all the tricks and tips about 1590A builds (pdf). I managed to make it, not the most impressive 1590A build ever, but nice though:
LPB1 boost clone 1590A

How does it sound?


Well, it is a simple clean boost. So you can either use it as a volume boost in front of your amp (if set clean), or in the FX loop, or to increase the gain of your amp if you have set it crunchy. You can also use it before a dirt pedal to increase the saturation of it.
I am planning on testing it in front of different builds. I already tried it in front of a Jan Ray build, making it basically a Tim, nice to have 2 gains settings in one pedal. I also want to try it in front of a Big Muff, like in the Musket Fuzz... I think it can fit in approximately any guitar pedal!



Circuit guide


I already did a circuit analysis of the LPB1 booster. However, I realized that sometimes, it is easier for beginners to understand the role of each component with an infographic, like the circuit guide of the Big Muff page.
Here is the one of the LPB1 booster :
LPB1 circuit guide schematic

Let me know if you like this kind of representations, I can try to update old circuit analysis with circuit guides like this one!

Black Keys's Big Muff: dealing with mids frequencies

Another Big Muff clone! This time, I was inspired by the Black Keys (if you do not know this band, go check it out, it is awesome!). Dan Auerbach, the guitarist/singer, uses a lot of fuzz effects, and especially a green russian Big Muff, and a Earthquaker Devices Hoof (a Big Muff variant with some interesting modifications as we will see later).

So I decided to basically mix these two variants in one Big Muff! Here it is, a 4-knobbed Big Muff:



Klon Centaur Clone and mods (Aion Refractor)

The Klon Centaur is one of the DIYer's favorite pedal. Indeed, the original version of this mythical overdrive actually costs more than 1500 euros! This pedal is more like a legendary unicorn than a real pedal that you can test one day... Even the reissue, the KTR, which is not hand assembled costs more than 300 dollars... The amount of clones (aka "klones") of this pedal has grown insanely over the years: JHS, Rockett, ARC Effects, Electro Harmonix with the Soul Food, almost every pedal manufacturer has issued their clone, always closer to the original pedal.

Summary

For those who do not know the Klon Centaur yet, it is an overdrive created in the 90s by Bill Finnegan and MIT engineers (yes!), that is probably the "hypest" pedals of all. It was used by many guitarists, including Jeff Beck for instance. It is a three potentiometers overdrive: gain, volume and trebles, famous for the light crunchy tones it provides to your sound. It has also an excellent reputation as a buffer or clean boost. In fact, I have already made Klon buffer PCBs to use it in a patch box.

Recently, different PCB makers made Klon Centaur PCBs available, so you can make your Klon Centaur yourself. I used a PCB from Aion Electronics, the Refractor overdrive. This PCB is amazing, a fantastic work has been done by Aion Electronics to make the circuit fit a 1590B enclosure ! If you want something a bit bigger (for instance if you want to make a Klon-like look), you can use the Madbean Sunking PCB. I also wanted to see if there were audible differences between my EHX Soul Food and a replica of an original Klon Centaur (without the goop ^^).

Here is the result!
Klon centaur clone
I used a prepainted enclosure from Banzai Music, in a classic gold color to make it look like the first golden Klon centaur pedals. I used a stamp to "print" a centaur on the enclosure with China ink. Then, I varnish the enclosure. I used a french website, called tamporelle, to make a custom inkstamp. It was very quick, and the stamp is of really good quality. Plus, it is quite cheap. I really like the result, it is not really easy first, but after a few tries it looked good!


I also used my laser engraved plate on the front side of it.
Klon centaur clone
To compact the Klon circuit in a 1590B enclosure, a fantastic work has been done by Aion Electronics. The PCB is very compact, yet quite easy to populate because it uses classic components, and you do not have to place resistors vertically. The PCB is of excellente quality, double sided of course. The guide made by Aion Electronics to help you to build it is really detailed and well done. If you want to make a small Klon clone, I really advise you to use this PCB.

However, it is not an easy build. The compaction of components is quite high, and you have to be quite precise when drilling the enclosure. Fortunately, the build document is really complete, and you have a drilling template included. Mine worked directly on the first attempt (This is a rare thing when building pedals...) !

Klon centaur clone aion electronics refractor
I decided to build a replica of the original Klon Centaur circuit. I used tantalum, electrolytic and film capacitors like it was on the first Klon Centaur pedals. For that, I used the document realized by Martin Chittum from freestompboxes.org in 2009. Indeed, the original pedal is gooped. Goop is a kind of black resin that embed the circuit and components, and prevent you to trace the circuit. The freestompbox community decided to buy a Klon Centaur, and sent it to Martin Chittum who managed to "ungoop" the circuit and trace the schematic of the Klon Centaur, and report precisely the components used.

The only point that remained elusive after this work was the kind of diodes used. They were germanium diodes of unknown nature. Some tests determine that the diodes had a 0,35V voltage drop, which matches russian D9E diodes, that I used for my Soul Food mod. I used these diodes in this build:
D9E diodes klon centaur
However, Bill Finnegan himself recently anounced that he used 1N34A germanium diodes in the original Klon Centaur:
    "The diode I have always used is a germanium diode with the part number 1N34A, but you should understand that this particular part has since the 1950s or so been manufactured by literally hundreds of different companies, and having listened to as many different ones as I have, I can say with confidence that they all sound somewhat different in my circuit, and often they sound VERY different." -Bill Finnegan, The Gear Page forum post-
These are really basic germanium diodes, quite surprising for these mythical diodes! The D9E are old soviet diodes, so it is true that managing to grab some of them in 1991 (when Bill started to develop the circuit), two years only after Berlin wall's fall, must have been difficult! Moreover, the marking is different between the soviet diodes (blue mark on the anode) and the diodes that you can find in the Klon Centaur (black mark on the cathode). For me, it is probable that diodes used were 1N34A, but maybe as he is saying these diodes were from a batch that sounded a bit different from more recent 1N34A... D9E sound good to me and have the right measured voltage drop anyway, so I'll keep using them.



How does it sound?


As you may know if you know me or follow my blog, I am really sceptical about the Klon "mythical" reputation. My Soul Food seemed like a good reproduction of the sounds delivered by the Klon, and I did not really get the buzz around this pedal. It is a nice clean boost, and good for really light saturations, but was a little too trebly for my ears. With more gain, the pedal becomes really "transistor" sounding, and quite boring... Finally it became more my boost pedal than a true overdrive pedal.

So I started to test the pedal without great expectations. I have to admit that I was surprized! If the pedal really sounds like the Soul Food in low gain settings (really nice for light crunchy riffs), the high gain settings sound really nice with the Klone!

It is very dynamic and powerful, yet quite transparent, with some added mediums and trebles that makes you want to play big crunchy solos! I understand better the setting that Jeff Beck uses on his Klon Centaur:
Klon Centaur Jeff Beck pedalboard
(gain pot is on the left)

I am really surprised... I will do a blind test to be sure that my brain is not playing with me, but it seems like there are differences with high gain settings.

The pedal was compared to a Klon KTR, and sounds are really close, no audible difference between them. Proof that everything is about circuit and components, and not mojo and magic!
Klon clone vs klon KTR 
You understood, it is really close to the KTR. If you want to have an idea of how it sounds, listen to demo video of the KTR. I will try to record samples as soon as I get gear for recording audio samples.
Coda Effects Klon clone vs Klon KTR
I am currently making a small serie of 5 pedals to buy some gear to record proper video and audio samples... Send me an email if you are interested.




Circuit analysis


The Klon is a rather complex circuit. It is quite weird because there are lots of informations and tests about this pedal online, however there are few informations about how the circuit works precisely. I have to remind you that the circuit was mainly conceived by electronics engineers from the MIT (and not by Bill Finnegan, who tweaked it more than conceive it), and thus, the circuit is quite "non-standard" compared to classic overdrive circuits (Tube Screamer, Rat Distorsion...etc). So brace yourself, winter is co... lets analyze this!

If you are not very familiar with the different components, and the theory around guitar pedals, I suggest that you read a few articles about theory and other circuit analysis before reading this one!

Here is the famous circuit:
Klon Centaur Schematic

You can already see that, contrary to many overpriced "bouteeek" pedals, the circuit is not a tubescreamer, and is entirely original!

So we can already see 4 operational amplifiers (OP amps), the famous germanium diodes between the second and third OP amp. If we try to see where the signal goes, we can see that there are several pathes that the signal follows, we can see that the signal is divided between clean and saturated, and then mixed again. When the pedal is "off", the signal still goes through the top part of the circuit.

I traced the path followed by the signal:
Klon centaur schematic circuit analysis signal path

We can see that the bypass signal (blue) is splitted in two: clean and saturated signal (green and pink, respectively). The amount of each splitted signal is dosed by a double potentiometer, the gain potentiometer. So basically, drive and clean signal are mixed, which allows really light and low saturation mimicking an amplifier just at the break up. If the Klon is so good with light drives, it is surely thanks to this mechanism that allow to have very slight saturations mixed with your clean signal.

You can also see that when the pedal is off, your signal can still go through an OP amp (it is the blue loop at the top of the schematic)... It is the famous buffer!

If we divide the circuit in different sections like we are used to, it can be this:
Klon Centaur schematic circuit analysis
Finally, in the bottom right corner, you can see a power supply section using a MAX1044, that allows to have different tensions in the circuit. If you remember, the MAX1044 integrated circuits can be use to double a tension, or to invert it. Here, both of these functions are used!
Lets see this part of the circuit first!



1. Klon Centaur power supply

As you can see, there are no more than 4 different tensions delivered by the Klon Centaur power supply! We have V+ (9V), VB+ (4,5V), V- (-9V) and V2+ (18V)! Simple circuits are for the newbies lel!
Klon centaur power supply schematic
V+ (9V) is stabilized using a 47uF capacitor, and a diode (D4) prevents polarity inversion. It is the classical power supply scheme.

V+ is then divided by two using a voltage divider with R29 and R30, to have VB+ (4.5V). If you do not know what a voltage divider is, read my post about resistors and their role in effect pedals. This tension is also stabilized with a 47uF capacitor (C18).

Finally, the MAX1044 is used to have an inverted tension (V-, -9V) and doubled (+V2, +18V). The MAX1044 is an integrated circuit sold by Maxim, that allows to transform tensions. Here, it is used as indicated on the datasheet (as simple as that!). For more infos about the MAX1044, read my article avec voltage doublers.


2. Klon buffer analysis

The blue loop on the top of the circuit that goes towards the output of the circuit is only active when the pedal is "off". It is the famous buffer! A buffer has a high input impedance, and a low output impedance, so that high frequencies are maintained all along your signal chain. Here is the scheme of the klon buffer:
Klon centaur buffer schematic
(remembre, I designed a PCB to make it)

The first part, until C2, is simply the circuit input. There is a resistor at the input of the circuit (R1), and a pulldown resistor to avoir "popping" noises when the circuit is turned on. For more infos about pulldown resistor, read my article about resistors in guitar pedals.

The C1 capacitor is a coupling capacitor: it prevents parasitic DC currents from the pickups to go in the circuit. With R2 resistor, it also forms a high pass filter. If the value of the capacitor is bigger, you will allow more bass to go though the circuit. Here, with a value of 0.1uF, most of the bass of the guitar will go through the buffer, so the buffer will be transparent!

Then, the signal enters the OP amp, first one of the TL072CP. The TL072 is a double OP amp, very transparent. It is wired in non inverter (signal enters the OP amp through the + input). Usually, they are some resistors to define the gain of the amplifier, here, there are none. Thus, the gain is around 1, which allows you to have the same volume at the input, and the output. The OP amp has a high impedance input, and a low impedance output: the buffer diminishes the signal impendance, and maintains the volume!

Finally, there is a 4.7uF coupling cap, combined with a 100k resistor connected to the ground. This is a high pass filter (again), that will let almost all bass frequencies go through it (again). A last 560R resistor will adjust the final volume, and the signal gets out of the buffer.



3. Signal splitter

When the circuit is "on", the signal does not goes through the buffer, that is disconnected from the circuit by the footswitch, but through a "splitter". This part of the circuit splits the signal in two: clean and saturated signal.
Klon centaur splitter
At the input of the splitter, there is the beginning of the buffer circuit. Instead of going to the top partof the circuit, the signal can now take several pathes: down through the 5.1k resistor and the C4 capacitor, go through the second OP amp, or can go through the R17 resistor... What is this mess?

These different splitters selects some specifics frequencies. Unfortunately, I am not good enough with theory to tell you which ones... It involves rather complicated calculations with Fourier transforms and all... If any talented personn could help me with that, it would be awesome!

Lets focus on the bottom part. The signal goes through different components (R5, C4, R6, C6 and R9), then goes through the GAIN2 potentiometer, that set the maximum . You can see that the signal does not goes through any diode clipping system, so this part of the signal stays clean. In the end of the loop, it is mixed with the saturated signal.

The clean signal can also go through the top part of circuit, with the 1,5 and 15k resistor. It adds a bit of clean signal in the end that is mixed with the GAIN2 clean signal and the saturated signal, in order to always have a bit of clean mixed with the saturated signal, even when GAIN2 is maxed.

Finally, the remaining signal goes to the input of the second OP amp. A GAIN1 potentiometer set the amount of signal going into the amplification loop of the OP amp. GAIN1 and GAIN2 are in fact one double potentiometer: when the value of one increase, the other one increase! Thus, it doses the amount of clean and saturated signal to mix together: the more saturated signal, the less clean signal! It is an unique feature that is not present in any other pedal, and this is one of the novelty brung by the Klon Centaur: a part of the signal is kept as is, and the other part is saturated. Thus, the overdrive is really good for low drive.

The saturation comes mainly from the OP amp saturation. Another thing that is not usual with classic overdrives circuits! It has quit a high gain. We can calculate it. It is wired in non-inverter, so the gain will be 1 + loop resistor / resistor to ground = 1 + 422 / (15 + 2  + value of the 100k potentiometer  = 1 + 422 / (117) = 4,6 with the lowest gain, and 1 + 422 /  (17) = 25,8 when gain is maxed.

Then, there is a coupling capacitor (C9), and signal arrives towards the famous germanium diodes D2/D3. Most of the times, with moderate gain, these diodes are useless! I could test that with my soul food mod. They only are important when the gain is set up pretty high.

Finally, at the end of the splitter, all the signals are mixed again together.


4. Output signal mixer

Here we are, this is the last part of the circuit, the "signal mixer"!
Klon centaur output stage
The two signals that were mixed at the end of the splitter are going to be amplified and filtered a bit.
A first OP amp wired in inverter amplifies the signal. This OP amp has quite a high gain, that insures a high volume gain, useful if you want to use the Klon as a boost. This is where the incredible amount of volume of the Centaur comes from.

A second OP amp with a gain of 2 (look at the values of R22 and R24) will allow to set the final amount of trebles in the output signal. It is a classical high pass filter: you let the signal go through until a certain frequency, defined by the C14 capacitor. Decreasing the value of this capacitor will let more treble go through. A common mod is to increase the value of this cap to have less treble (we will see it later). The amount of trebles that can go through this cap is set by the treble potentiometer.

Finally, a 4.7uF coupling capacitor prevents parasit DC current from going into the last section. A 560R resistor the volume potentiometer will define the final volume of the output! There are also two resistors, R27 and R28, but I have to admit that I have no clue about their role... if anyone knows?

There are still things that I do not really get with this circuit... I guess it is a little bit overcomplicated. I would love to understand the splitter in details, but I am still lacking some precious filters knowledge...

I hope it still gave you an idea about how the circuit works. If you have any question, do not hesitate to post a comment. Lets have fun now that we know the circuit: what can we mod?


Klon centaur mods and tweaks


The Klon centaur circuit can be modded easily to modulate the gain, bass response or diode clipping. Lets see a few Klon Centaur mods together:
  • Increase C14 value: it is a very common mod to set the tone response a bit better. It allows a bit more bass to go through and make the Klon less "thin sounding". I usually use a 6.8nF capacitor, treble pot is thus more useable.
  • Separate the dual gain potentiometer in two pots: instead of using a double potentiometer, you can split each parameter with two 100k potentiometers. You can choose how much clean signal you will blend with the overdrive sound, or use only the overdrive part of the circuit. It is also useful for bass, if you want to let more bass goes through the circuit. I guess that the blend potentiometer on the bass soul food comes from this mod.
  • Diode clipping switch: you can choose between two sets of diodes with a simple DPDT switch. This is what I did with my Soul Food mod. There are not much changes between germanium and silicon diodes, however LED gave some nice results. There is much more headroom, it feels a bit like a distorsion!
  • Bass switch (madbean "fat" switch): this switch will affect the amount of bass that goes through the second OP amp. To do that, we can add a switch to choose between the 82nF stock capacitor and a 150nF one for C7.
    Klon bass switch mod
  • Bass contour mod: instead of using a switch, you can use a 50k potentiometer to blend the higher value capacitor in. You can also use a bigger value like 220 nF or even 1uF! However, you can see that this mod is only acting on the saturated part of the circuit, and not on the clean signal that is blend later. Thus, it is more hearable with high gain values... To have a proper bass knob, you can try to use a double potentiometer, and blend a higher value capacitor in parallel of C4 (68nF) too! I have never try that, maybe I will give it a shot at one point.
    Klon bass potentiometer mod
  • Using different OP amps: instead of the TL072CP, you can use different less noisy OP amps, or more "classic" overdrive OP amps. The simplest solution is to use sockets for OP amps, and try any double OP amp IC that you would like. To test: LM1458, OPA2132, LF353, JRC4558D... Any double OP amp can give you interesting results!
  • Increase gain: to have more gain on your unit, you can modify R10 resistor. It has a 2K resistor originally, and you can use a lower value to have more gain, or even a jumper!
  • Using the Klon Centaur with a bass: if you cant to use the Klon Centaur with a bass, you can change a few values to let more bass going through  (from Madbean pedals): C1, C3, C4 : 220 nF, C5 : 100 nF, C6 : 1 uF, C8, C13 : 1 nF, C7 : 330 nF, C11 : 6,8 nF, C12 : 56 nF, C14 : 15 nF. I also strongly suggest to separate the gain and blend knob (second mod), so that you can dose how much bass will go through the circuit. The Bass Soul Food actually uses this mod. Here is the traced scheme for our bassist fellows:
Klon centaur for bass schematic
  • 1994's specs switch: in 1995, Bill Finnegan slightly modified the circuit (see below). Most of the changes were not affecting the sound, except the addition of R11 (15k resistor), that was supposed to boost a bit the bottom mids. If you want to hear what that does to your tone, you can put a switch there to choose between the 15K resistor or a jumper.
I will try to do some videos of some of these mods.


Klon centaur versions


Aestheticaly, the enclosure design changed a bit around the production time. Lets do a bit of "klonology" (chronology, get it ?! OK, I'm out...)
Klon Centaur versions
Gold and silver klons were produced at the same time, however the silver Klon was introduced in the early 2000s, and the graphics changed a bit with time. Three graphics can be considered: no centaur, big centaur with "open tail", and small centaur with closed tail. There were 5 different colors: 4 different gold colors (that you can see on the picture above), and the bare polished aluminium color (aka "silver" centaur). Around 8000 Klon centaurs were made between 1994 and 2009 according to Bill Finnegan (1.5 Klon centaur a day!). All those Klon worth today more than 12.000.000 euros!

First, there are no differences between gold and silver centaurs. The circuit and component values are exactly the same. Hearable differences should be really low and due to component's tolerances (Bill Finnegan used carbon film resistors with a 5% tolerance,  capacitors with 20% tolerance, so you can expect some slight variations from units to units)

Concerning the electronics, contrary to many other guitar pedal lines (Big Muff...), no big changes happened over time. The first version produced in 1994 lacked the resistor at the beginning of the circuit (R1), had no ground plane, and missed the R11 resistor. All these changes were processed in 1995. The 15k R11 resistor was added to have a bit more low-mids response. However, if you try to remove, the changes are incredibely subtle...
    “The fact is, under the hood they’re all basically the same. In 1995 I made three small changes: I added a resistor to give the circuit some protection against a static charge delivered to its input—a change that has no sonic effect. I also had the circuit board redesigned with a ground plane for better grounding—again, no sonic effect except the potential for a little less hum. And I added a resistor to give the circuit a very small amount of additional low-mid response—I wanted it to have a little more roundness when used with, say, a Strat into a Super Reverb. I made no other changes.”   - Bill Finnegan, Premier Guitar interview -
Another change noticed by Manticore FX is that another resistor was added at some point at the end of the circuit. It is R28, a 100k resistor that is present just before the switch. I do not really know its role, if you have any ideas...

The KTR version was issued in 2012. It basically has the exact same circuit as the Klon centaur, and the same diodes for clipping, but it was intented for mass production. It uses surface mounted devices (SMD), so the production could be automatized (the KTR is not handmade, but made by robots), so Bill Finnegan could focus on control quality. The price tag is still high though, especially for a mass produced device. The four years during which the Klon was discontinued has been the Klones golden age, and a lot of klon clones were issued during these years. Even today, as the KTR is quite expensive and big, there is still a lot of room for klones, and some builders find their way there (Rockett for instance), making Bill Finnegan a bit angry. Indeed, it is a bit smaller than previous versions, but uses 1590BB enclosure. Bill spent a lot of time testing different SMD components to make it sound exactly like the original Centaurs units. He also avoided to use electrolytic capacitors, and kept the tolerances of the components low, in order to have similar sounding units.

Bill Finnegan was aked whether he would try to make another pedal, but obviously he has some issue with kloners all around (especially with Rockett):
    "If any new product I come out with will be ripped off immediately after its release, and if unscrupulous people will again be making money off of my work, and if on top of that Klon’s reputation and my own personal reputation will be at risk every time someone decides to put out his own version of one of my designs, then where is my incentive to release anything new at all? Over the past few years, I’ve talked with a number of other pedal designers about this stuff—good people who design their own circuits, and whose circuits have also been ripped off—and we all agree there is now an enormous disincentive for any of us to create and release new products." - Bill Finnegan, Premier Guitar interview -
Maybe next Klon product will be a numerical SMD pedal (not klonable!). Obviously, the Klon case introduced the ethical problem about cloning pedal in the DIY and guitar pedal afficionados community. As there is almost no legal protection to clone circuits, the only barrier is ethics. I think it is an interesting debate to have. I am currently writing an article about that, including some pedal patents and reflexions about cloning.

Fun facts about the Klon

  • The name "Klon" is a shortener for "Klondike", a region of the USA famous for its gold rush during the 19th century (among other facts).
  • To order a Klon Centaur when it was produced, you had to call Mr Finnegan to discuss the pedal and it could fits your needs, and give him a professional adress (it could not be shipped to your home!)
  • Hitler is not satisfied with his Klon Centaur (Bill Finnegan actually found it hilarious)
  • There is a 20-pages thread on the Gear Page to discuss whether the KTR design was real or not when it was released
  • Some people are ready to spend more than 2000 dollars for the original version of the Klon Centaur!


There it is, this is the end of this post! I know it is dense, so take your time, and do not hesitate to ask questions by posting a comment! I this point, I am not totally sure about how each part of the circuit works, so do not hesitate to correct mistakes I could have made in the circuit analysis.

Did you like this article ? Thank me by liking the Coda Effects facebook page!



To go further
2009 document produced in 2009 by Martin Chittum from freestompboxes.org
Aion electronics building guide, well helpful and with a lot of informations about the Klon Centaur.
Refractor project page by Aion Electronics.
"Klown" Centaur page of the Revolution Deux website.
"Sunking" project from madbean pedals, another Klon clone with a bigger PCB for 1590BB enclosures.
Modded "Klown" centaur of the Revolution Deux website.
Website with pictures of Klon centaur, classified by serials
Manticore fx : lots of informations about the Klon
History of the Klon Centaur on Premier Guitar, with a Bill Finnegan interview.
Klone science on madbean pedal: frequency response plots of different klon clones

All you need to know about resistors in guitar pedals

In this article (that will be part of a series of articles about the different components you can find in a guitar pedal), we will try to decipher the role of a component you surely already know: the resistor! The resistor is a simple 2-legged component. It is the basic brick of every electronic circuit, like the simplest cubic Lego brick. You will find resistors everywhere, it has many, many, many possible uses. Here, we will be interested in its role in guitar pedals.


What does it looks like?

The common resistor looks like a brown / blue cylinder, with rings of different colours and 2 legs.
metal film resistor 
Everything is about color with resistors (being color blind is quite painful with it... If you are, there is an app to help you). The overall color of the resistor indicates its composition: carbon comp are dark-brown, carbon film are beige and metal film resistor are blue / cyan like the picture above. Which ones are the best for guitar pedals? Check my post: how to choose resistors for guitar pedals.

The coloured rings allow you to know what is the value of the resistor, written in Ohms. Each colour correponds to a number:
 
Resistor color code 
Here for instance, we can read on the 3 first rings: "1", "5" and "0" = 150
The 4th number is 100, so we multiply the first value by 100 : 150 x 100 = 15000 = 15k

The last ring indicates the tolerance of the component. Tolerance is the possible maximal difference between the theoritical value indicated on the component (15k for instance), and its real value (14,99k for example). Practicaly speaking, metal film resistors that are used most of the times in guitar pedals have a 1% tolerance value (that is precise enough!), but some "precision" resistor can have tolerances down to 0.01%! They are often use in measurement devices like multimeters. In our case, 1% is really a sufficient value, there will be no audible difference if you swap a 100 ohms resistor by a 99 ohms one...

Knowing this code is not essential, you learn it gradually by practicing! If you forget, Google is here for you anyway ;)
Resistor joke

Inside the resistor, below this coloured capsule, there is a resistive film arranged as a spiral, composed of metal or carbon (carbon film or metal film!). The longer this film is, the higher the value of the resistor will be.
Resistor inside
Here for instance, the upper resistor is 27 ohms, the middle one 330 ohms and the bottom one 3.3 Mega Ohm (3 300 000 Ohms !)

The resistor has 2 symbols:
Resistor symbol
On the left is the european symbol (R5), and on the right is the american symbol (R6). It is not the only component with two different symbols. Capacitors also have different symbols between Europe and America. For resistors, I actually prefer the american symbol that evoques maybe more the role played by the resistor and the resistive strip. It is also more common to find it on guitar effects schematics.

If you want to buy cheap (but nice quality) resistors, I have this great deal.


What is its role?

A resistor, as its name suggests, resits against the flow of current. It will "absorb" a bit a current and transform it into heat. Thus, current will diminish when going through a resistor. This will diminish the voltage of the signal. The tension of the resistor is characterized this by the relationship:

U=R x I
with U = tension of the resistor (Volts), R = resistance (ohms)
and I= current intensity (amperes)

So basically, a part of the guitar signal will be absorbed to generate this tension. Thus, we can modulate the signal amplitude by modifying the resistor's value. This is really useful in a lot cases. Indeed, yout guitar signal is an alternative tension! If you want to learn more about it, read my article about electric guitar signal.

When the signal goes through a resistor, its amplitude decreases. A lower amplitude signal is simply a lower volume signal!

With a resistor, it is thus possible to reduce guitar volume! However, a resistor can only diminish the voltage amplitude. To amplify a signal, you need semiconductor devices like transistors or an OP amp.
The resistor has a lot of other applications of course! Lets see of few of them together.


How are resistors used in guitar pedals?

A resistor can have many, many applications... Here are some resistors standard applications that you can find in guitar pedals.


1. Adjusting the input or output level of an effect

Here is an example from the Big Muff circuit. An input resistor adjusts the amplitude of the input signal that will be amplified by a transistor. By changing this resistor, you can change the amount of signal entering the circuit, and thus you can change the overall gain of the pedal. Inversely, if its value is increased, the signal will be less amplified and you will have a smoother, less gainy Big Muff!

Input output resistor guitar effect
You can do the same thing at the end of the circuit to set the output volume! Usually, we use a potentiometer wired as a variable resistor, so you can adjust the final volume.

2. Pulldown resistors

When a circuit is off, some voltage can stay at the beginning the disconnected input of the circuit or in capacitors. When the pedal is turned on, the voltage goes through the circuit and causes these annoying "popping noises". To avoid that, we can add a pulldown resistor at the entry or / and output of the circuit: 

Pulldown resistor guitar effect

Generally, a resistor with a high value (like 1M) is connected to the ground on the signal path. Thus, the excess of current that goes through the circuit when the pedal is turned on is absorbed by this resistor, and you avoid these loud noises.

3. Adjusting the gain of a transistor or an Operational Amplifier

Generally, transistors or OP-amps are used in a really simple schematic that allows you to amplify the signal: common emitter / collector for the transistor, inverter or non-inverter for the OP-amp. Each of these simple schematics usually use resistors. These resistors will define the gain of the circuit.
For an OP-amp, the gain value is easy to calculate: for an inverter circuit, it will be R2/R1 and for a non-inverter circuit, it will be 1 + R4/R3. Thus, you can adjust the gain in a very precise manner! It is used in the Rub-A-Dub reverb to adjust the entry and output level of the effect.
common emitter circuit transistor
For a transistor wired in common emitter like here, you can adjust the value of the resistor connected to the ground (bigger value : less gain), or to the +9V bus (bigger value: more gain). You can already use this tip in the Big Muff circuit!

4. Voltage divider

This really simple scheme allows you to adjust the voltage that you provide to some parts of the circuit.
Voltage divider
The delivered tension V1 is simply : 9V x R2 / (R1 + R2).
If you put the same value to R1 and R2, you simply divide your input tension (here, 9V) by two.
This can be really useful for some components. For instance, a lot of operational amplifiers (AOP) need a 4.5V tension to work properly. It can also be really useful to bias the base of a transistor. You can see such a scheme in the volume / output section of the Big Muff circuit.


What about potentiometers?

A potentiometer is simply a variable resistor! Any resistor of a circuit can be replaced by a potentiometer, so that the user can modify manually a value. We will see how it works in detail in another article.

Just an example: if you put a potentiometer in the loop of an operational amplifier, you can make the gain vary just by turning the potentiometer! Ideal for a volume boost, or to set the maximal amount of gain with clipping diodes. You can find such thing in the Jan Ray / Timmy circuit.

You can also put a potentiometer wired as a variable resistor to the ground at the end of the circuit, just before the output, so you can set the final volume! It is the simplest possible volume control, which you can find in many circuits, including the Fuzz Face.


An example

Lets see an example together. Here is a simple circuit, the Linear Power Booster 1 (LPB1), from Electro Harmonix. It is the first boost using a silicon transistor.

As you can see, there are five resistors (6 if we include the boost potentiometer) in this circuit. With all the things we saw before, you should be able to determine what is each resistor's role in this circuit.

The smarter guys (girls?) among us should even know which resistors to change to have more or less gain with this boost!

Some help with reading the schematic: first, try to see what path the signal is going through. For that, link the input to the output of the circuit, and you can see where the signal is going. Here, it goes through C1, Q2, C2, and then the "Boost" potentiometer. Now, you should be able to find the role of the resistors.
If you do not, do not worry! Here is some help: http://www.coda-effects.com/2015/09/lpb1-mini-pcb.html


Was this article useful? Thank me by liking the Coda Effect facebook page!
Any question? Post a comment!

Pour aller plus loin :
Nice guide from guitarPCB, about all guitar fx components.
Pulldown resistors: AMZ FX blog
Sparkfun post about resistors, easy to read and didactic. 
www.resistorguide.com: a whole website only about resistors! Great reading, highly recommended.